If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-20=31
We move all terms to the left:
3x^2-20-(31)=0
We add all the numbers together, and all the variables
3x^2-51=0
a = 3; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·3·(-51)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{17}}{2*3}=\frac{0-6\sqrt{17}}{6} =-\frac{6\sqrt{17}}{6} =-\sqrt{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{17}}{2*3}=\frac{0+6\sqrt{17}}{6} =\frac{6\sqrt{17}}{6} =\sqrt{17} $
| 2/x=0,5 | | 2b-11=-5b+20-17 | | (6x-18)=(3x) | | 6v=-13+7v | | 12y-3=3y+14+3y+14 | | (3/7x+4)=(1/7x-2) | | 1.7g+3=11g+39 | | T(n)=6n-1;T(n)=59 | | -1-2r+10r=7r-8 | | 6x-25=8x+51 | | -2+10y=9y | | 30=p=15 | | 19x=95*5 | | x/12=84 | | 1+3/5a=8 | | -6-14k=-2k=6 | | x/4+3/2=-1/2 | | (m-12=9-12m) | | -10-7w=8-9w | | 24+x=79 | | 1/6(6x-4)=-4/5-7/5 | | 2q=7+3q | | x-57=85 | | 10m-8-5m=-3+6m | | -5.2x+57.8=15.9+1.8x | | 5x+1+5x+1=42 | | x/8=84 | | 9 = q+123 | | -8t^2+39t+1=0 | | (2m+1)(2m-1)(m-2)-3(2m+1)(m-2)(m-1)+2(2m-1)(m-2)(m-1)=0 | | 72,218+10x=20,424+21.75x | | -4-8v=-7v-5 |